
LA-UR-20-25790

PEACH: Data Allocation and Movement using a
PErformance Aware Compiler framework for

Heterogeneous memory system
1Onkar Patil, 2Latchesar Ionkov, 2Jason Lee, 1Frank Mueller,

2Michael Lang
1Dept. of Computer Science, North Carolina State University

2Ultrascale Research Center, Los Alamos National Laboratory

LA-UR-20-25790

Problem Statement

• Heterogeneous Memory Systems
– HBM-DRAM, DRAM-NVM, HBM-DRAM-NVM, etc.
– Local and Remote NUMA regions
– Performance, Power and Capacity varies

• Data Allocation and Movement
– Not a trivial problem
– HPC applications have 100-1000s data structures
– Data Structures can scale up to TBs or PBs
– Too many factors to be considered by application programmers to make optimal decisions

– Balance compute, memory and communication resources while maintaining a power budget

LA-UR-20-25790

Problem Statement

• Compiler and Runtime frameworks
– Work in tandem to provide user-level Memory Management
– Mostly designed for Homogeneous NUMA memory systems
– Focused primarily on reducing fragmentation, memory leaks and memory corruption

LA-UR-20-25790

Hypothesis

• The onus of allocating memory for an application on a heterogeneous memory
system should move from the programmer to the compiler

• As heterogeneous memory systems become more prominent, compiler and
runtime frameworks need to be more performance and capacity aware of the
underlying memory devices to ensure optimal performance of applications

LA-UR-20-25790

PEACH: Compiler Framework

source ./install.sh

ClangApp
Code
(Malloc

calls)
[eg. VPIC,

AMG,
LULESH,
SNAP]

SICM
(Performance aware

memory
classification)

OPT
(LLVM IR)

MallocTransformPass
(Modify malloc calls to

sicm_class_alloc, Add SICM init,
final calls, heuristic based
allocation, loop splitting)

Executable

Classifies memory as fast, slow and
slowest. Measures the data transfer

bandwidth as well. Provides the ratio
of the performance difference

between all NUMA devices

Analyze the memory access
patterns for all loops. Use the
heuristics to modify the IR so

data structures are allocated to
the appropriate memory device

and moved appropriately

Run for specific
memory

architecture

LA-UR-20-25790

Simple Interface for Complex Memory (SICM)

• Data allocation and movement enabling API library

• Uses jemalloc underneath

• Extends the arena based allocation concepts of jemalloc to heterogenous
memory system

LA-UR-20-25790

Performance Awareness

• SICM identified NUMA devices but did not have any information about performance (Memory
Bandwidth)

• Extended SICM to classify NUMA devices based on performance
– At installation, install.sh runs a set of performance benchmarks that classify each NUMA device as

fast, slow, slowest for each CPU/GPU group
– Uses a Wr-only and single write and multiple read benchmark to measure bandwidth
– Uses a simple k-means clustering to classify the NUMA devices

– Also measures data movement bandwidth
– Installation time increases by 45-75 seconds depending on the no. of NUMA devices

• Classification is read at runtime from a file

• Extended the SICM low-level API to incorporate the performance classification
– Modified sicm_init() and sicm_fini() to sicm_class_init() and sicm_class_fini()
– Added sicm_class_alloc(), sicm_class_realloc(), sicm_class_move() and sicm_class_free()

LA-UR-20-25790

Performance Awareness

• NUMA Classification file
– sicm_config
– Sourced into runtime using an environment

variable

NUMA Device classification
CPU ID NUMA ID Type Init(Mb/s) Triad(Mb/s)
72-95 1 fast 83665.204771 67649.395964
72-95 0 slow 41630.203821 33573.023831
72-95 3 slowest 4073.821638 6189.551163
72-95 2 slowest 1220.172135 810.849809
CPU ID NUMA ID Type Init(Mb/s) Triad(Mb/s)
48-71 0 fast 80094.647213 69189.514867
48-71 1 slow 44094.883771 34690.394709
48-71 2 slowest 4138.825899 6079.981850
48-71 3 slowest 1202.866903 799.498232
…
Page Migration measurement
CPU ID SRC DEST PgMigration(Mb/s)
72-95 0 1 17733886.936360
72-95 0 2 35102711.638282
72-95 0 3 35168571.209754
72-95 1 0 19843487.223887
72-95 1 2 35407006.497107
72-95 1 3 35253389.253937
72-95 2 0 9014960.473411
72-95 2 1 36200631.351450
72-95 2 3 40998997.652807
72-95 3 0 13322124.177216
72-95 3 1 34191903.297198
72-95 3 2 33858166.176772
…

LA-UR-20-25790

AllocTransform Pass

• LLVM IR-level pass
– Completely integrated into clang/LLVM pipeline (load using –Xclang), SICM linked

dynamically
– Inserts sicm_class_init(), sicm_class_fini() at the entry and return of main()
– malloc(size) à sicm_class_alloc(speed, size) where speed(0/1/2) indicates the WR BW
– realloc(ptr, size) à sicm_class_realloc(speed, ptr, size) where speed(0/1/2) indicates the

WR BW
– free(ptr) à sicm_class_free(ptr)
– sicm_class_move(speed, ptr) where speed(0/1/2) indicates the WR BW
– Other APIs, Data structure added but are used internally

• Each allocation has its own arena. Mapping is maintained in a data structure

LA-UR-20-25790

AllocTransform Pass

define dso_local i32 @main(i32 %argc, i8** %argv) #0 {
entry:
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
…
%40 = load i64, i64* %size10, align 8
%call58 = call noalias i8* @malloc(i64 %40) #5
%41 = bitcast i8* %call58 to double*
store double* %41, double** %a, align 8
%42 = load i64, i64* %size10, align 8
%call59 = call noalias i8* @malloc(i64 %42) #5
%43 = bitcast i8* %call59 to double*
store double* %43, double** %b, align 8
…
ret i32 0
}

define dso_local i32 @main(i32 %argc, i8** %argv) #0 {
entry:

%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 8
call void @sicm_class_init()
…
%43 = load i64, i64* %size10, align 8

%44 = zext i32 0 to i64
%sicmalloccall3 = call i8* @sicm_class_alloc(i64 %44, i64 %43)
%45 = bitcast i8* %sicmalloccall3 to double*
store double* %45, double** %a, align 8
%46 = load i64, i64* %size10, align 8
%47 = zext i32 0 to i64
%sicmalloccall4 = call i8* @sicm_class_alloc(i64 %47, i64 %46)
%48 = bitcast i8* %sicmalloccall4 to double*
store double* %48, double** %b, align 8
…
call void @sicm_fini()
ret i32 0

}

LA-UR-20-25790

Future Work

• Add a heuristic based policy for the compiler
– Identify access patterns in loops and allocate the data structures in the appropriate

memory class
– Introduce loop splitting and scheduling memory movement and loop execution

• Work on characterizing LULESH, VPIC, SNAP
– AMG will be hard to run with the compiler as it uses memory wrappers
– Add CFG analysis/transformations to help work around them

LA-UR-20-25790

Conclusion

• PEACH enables applications allocate and move data between heterogeneous
memory devices on a system

• Application programmers can continue to design their applications the same
as before

